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SUMMARY

In this paper, we describe the construction of a three-dimensional adaptive mesh data assimilation
method for oceanographic/coastal applications, including a free surface. This is the �rst attempt at
introducing a moving computational domain into an adjoint model with mesh adaptivity. We also
provide insight into the feasibility and reliability of the adaptive mesh adjoint model. The use of di�ering
adapting meshes for forward and adjoint problems is considered here, where each mesh is optimized
with respect to the individual properties of each solution. The free surface test case considered is that
of �ow in a two-dimensional vertical �uid slice. In this test case the sea surface elevation boundary
conditions is optimized by assimilating sea surface height observations. The feasibility of an assimi-
lation approach on adapting moving domains is demonstrated by comparison with a �xed mesh result.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the rapid development of observational measurement techniques, such as in situ mea-
surements and remote sensing, there is an increasing interest in the assimilation of advanced
observations into models. The assimilation of observations may be used to optimize unknown
model inputs such as initial and boundary conditions, sea surface elevation, bottom friction
coe�cients, and wind stress, see for example References [1, 2]. The adjoint method is a
technique which can e�ciently assimilate observed data into simulations [3, 4]. It is also an
e�ective tool for performing sensitivity analysis, which has applications in observation plan-
ning as well as model development [4, 5]. The investigation of the adjoint method has been
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applied to 4D variational data assimilation [6–8]. The adjoint approach has also been ex-
tended to include a free surface (see for example References [9, 10] in the case of depth
averaged shallow water models), and used to increase the accuracy of hydrodynamic models
by assimilating available data to improve velocity boundary conditions. Our long-term aim
is to develop a robust and e�ective adjoint model to assimilate available data in space and
time into a spatially 3D prognostic model with a free surface. To do this we introduce a new
adaptive mesh adjoint model, which has the following features:

• Use of a non-hydrostatic Navier–Stokes �nite element solver on 3D anisotropic unstruc-
tured meshes [11, 12];

• introduction of mesh adaptivity into the adjoint model [13];
• incorporation of a free surface (moving computational domain [14]) into the adjoint
model;

• automatic production of a hierarchy of increasingly �ne meshes to accelerate inversion.
In the following section, the formulation of the adjoint model for data assimilation with

a free surface is given. This is followed by a discussion of the related numerical techniques
and the special treatment of the free surface. Finally, a simple test case is presented of 2D
channel �ow, where the adjoint model is applied to invert for free surface elevation at an
inlet boundary.

2. ADJOINT MODEL FORMULATION FOR DATA ASSIMILATION
WITH A FREE SURFACE

2.1. The objective functional

The objective of the optimization, which is achieved by adjusting the uncertainties (control
variables) in the model, is to minimize an objective functional. In this investigation the
objective functional is designed for inverting sea surface elevation at the inlet of a �ow
channel, and measures the mis�t between the numerical solution and observed data:

J(�; �b)≡ 1
2

∫
t

∫
�

N∑
k=1
(�− �o; k)TWk(�− �o; k) d�dt

+
1
2

∫
t

∫
@�
�(�b −H)T(�b −H) d(@�)dt (1)

Here, k represents an index of detectors which yield observations, with N being the total
number of such detectors; �b represents the unknown water elevation at the boundary, de�ned
here as a control variable to be optimized for using the adjoint method; �≡ �(x; y; t) is the
free surface elevation; �o; k is the observed free surface elevation at detector k; H is the
average water depth; Wk is a scalar weight associated with the mis�t between the numerical
solution and observation at detector k; � is a suitable scalar weighting for the penalty term
in (1) which is used to avoid spurious functional minima [4]; � is the computational domain
and @� is its boundary. A non-linear conjugate gradient method is used to minimize this
functional [15].
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2.2. The forward model

The numerical model used in this investigation employs 3D P1P1 (piecewise-linear represen-
tation of both velocity and pressure) tetrahedral �nite elements with theta time stepping. Due
to the well-known spurious modes present with this element choice [16] a fourth-order pres-
sure �lter is employed to aid stability. In addition, standard Petrov–Galerkin weightings [17]
are used to improve numerical stability in the presence of advection dominated �ows. The
assumption of hydrostatic balance is not invoked here. For additional numerical details see
References [11, 18]. The underlying model equations are thus comprised of the Navier–Stokes
momentum and continuity equations

@u
@t
+ u · ∇u + fk × u= − 1

�
∇p− sk+D; ∇ · u=0 (2)

and the kinematic free surface equation for the free surface elevation �, measured from some
�xed datum,

@�
@t
+ u

@�
@x
+ v

@�
@y
=w (3)

where u≡ (u; v; w)T is the velocity, p is the pressure, D contains the viscous terms expressed
in stress form, f represents the Coriolis inertial force, � is the density, s represents the
buoyancy force, and k = (0; 0; 1)T. For simplicity, here density is assumed constant and thus
the pressure p consists of hydrostatic ph(z) and non-hydrostatic pnh(x; y; z; t) components.
The hydrostatic component of pressure balances exactly the constant buoyancy force and both
terms are, therefore, dropped at this stage. Taking into account the free surface, pressure may
be written p=pnh + �g�, and (2) then takes the form

@u
@t
+ u · ∇u + fk × u + g

(
@�
@x
;
@�
@y
; 0

)T
+
1
�

∇pnh −D=0; ∇ · u=0 (4)

2.3. Formulation of an adjoint model

There are two ways to derive the adjoint model. One is to obtain the discrete adjoint model
directly from the discrete forward model, consistency with the discrete forward model is
then guaranteed. Alternatively, the adjoint model may be derived from the continuous for-
ward model equations. Since the forward and adjoint model equations are similar, it is rel-
atively straightforward to construct a resulting adjoint numerical code from a forward code.
The derivation of the adjoint equations can be done using the Euler–Lagrange method. This
is achieved by multiplying the tangent linear model by dual variables u∗; v∗; w∗; p∗; �∗,
and applying Green’s theorem (in space and time), to obtain the following adjoint
model:

− @u
∗

@t
− u · ∇u∗ − fk × u∗ − 1

�
∇p∗

nh −D∗

− (∇u∗)Tu −
(
�
@�∗

@x
; �
@�∗

@y
; �∗

)T
�(z − �)= (Su; Sv; Sw)T (5)
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∇ · (−�−1u∗) = Sp (6)

−@�
∗

@t
− @u�∗

@x
− @v�∗

@y
− g@u

∗

@x
− g@v

∗

@y
= S� (7)

Here, Su; Sv; Sw; Sp; S� are the source terms at the detectors where the observations are avail-
able, i.e. the mis�t of the numerical solution u; v; w; p; � and the corresponding observations
respectively: Su =

∑N
k=1 (u− uo; k)�(x − xo; k)�(y − yo; k)�(z − zo; k), with the other terms being

de�ned analogously, here �(·) is the Dirac-delta function, (xo; k ; yo; k ; zo; k) is the location of
detector k, and (uo; k ; vo; k ; wo; k) is the observed velocity. In addition, these source terms are
‘spread’ over the discrete numerical mesh via convolution with a Gaussian kernel. The adjoint
solution variables are used to calculate the gradient (see for example References [19, 20]) of
the objective functional (1) for use in the nonlinear conjugate gradient minimization.

3. MESH ADAPTIVITY AND THE FREE SURFACE

The meshes for the forward and adjoint components of the simulation are dynamically adapted
to best capture the distinct solution characteristics of each. In this work, a simple a priori
interpolation theory based error measure is employed; the curvature of the solution �elds are
thus used to guide mesh re�nements via local optimization [12]. In addition, the forward
model possesses a free surface which results in a moving domain, this additional complexity
is handled here using a mesh which is allowed to ‘move’ in the vertical, with nodes at the free
surface staying on the free surface and nodes at the sea bed remaining �xed. A combination
of mesh optimization, which primarily comprises local topological operations on the mesh
structure, and mesh movement is thus employed [14]. The adjoint equations are solved in the
same domain as the forward model, i.e. the domain controlled by the forward model’s free
surface, and are also based on the forward solution �elds. Therefore, to run the adjoint model
all information from the forward model from each time level is stored, i.e. the solution �elds
and the forward mesh. The procedure for running the adjoint model is thus to: (i) obtain the
computational domain from the forward water elevation solution at the current time level;
(ii) transform the adjoint mesh from the adjoint domain at the previous time level into the
current computation domain via vertical mesh movement; (iii) interpolate the forward solutions
from the forward mesh onto the resulting adjoint mesh.

4. TEST CASE AND DISCUSSION

The adjoint model is now applied to invert for the boundary condition (free surface height �b)
at the inlet in a 2D channel �ow problem (Figures 1 and 2). The length of the chan-
nel is 100 m. The average water depth is H =5:0 m. The free surface height at the in-
let is inverted by assimilating a pseudo-observation, in this case the free surface elevation.
This is obtained at the middle of the channel (x=50 m), via an identical twin experiment,
by running the forward model with the speci�ed control variable �exac (free surface height at
the inlet, �exac =H + 0:3 sin(2�t=45) and the initial conditions: �0 = 5:0 m and u0 = 0:3 ms−1.
Given the inverted free surface height at the boundary, �b, the corresponding in�ow veloc-
ity ub can be calculated by assuming: ub =U0 + (�b − H)

√
g=�b, for a background in�ow

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:995–1001



ADAPTIVE MESH DATA ASSIMILATION FOR FREE SURFACE FLOWS 999

Figure 1. Adapted mesh for the forward problem (left) and �ow velocity vectors (right). The maximum
velocity is approximately 0:5 ms−1. Figures have been stretched by a factor of 5 in the vertical.
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Figure 2. Adapted mesh for the adjoint problem (left) and the adjoint free surface pro�le along the
channel (right). The mesh is �ner where the curvature of the adjoint free surface variable is large.

velocity of U0 = 0:3ms−1 (see also [10]). Stress free boundary conditions are applied at the
outlet. With an initial guess of �b = 5:0 m and the corresponding ub = 0:3ms−1 at the inlet,
the whole inversion starts from the background �ow and average water depth. The meshes
for the forward and adjoint models are adapted from their original regular meshes with a
mesh size of 0:5 m in the horizontal and 1:0m in the vertical. Bounds on the minimum and
maximum adapted mesh element sizes are set to be 0.3 and 8:0 m in the horizontal, and
0.5 and 1:0 m in the vertical, respectively. Figure 1 shows: (a) an example of the forward
mesh, and (b) the corresponding �ow vector structure for the forward model at t = 34 s
from the forward solution with the optimized boundary condition. Figure 2 shows: (a) the
adaptive mesh for the adjoint model at the same time level as shown in Figure 1 (t = 34 s),
and (b) the corresponding pro�le of the adjoint free surface elevation. The advantage of the
di�erent adaptive meshes for the forward and adjoint model is that the meshes are adapted
to best suit their own �ow features. The adjoint mesh is �ner near the observation location
(x = 50 m), which is adapted according to the curvature of the adjoint free surface elevation
(see Figure 2). For the forward model at the beginning of the simulation time a �ner mesh is
formed at the inlet, with a much coarser mesh towards the outlet (where all solution �elds are
linear and hence well approximated using fewer elements). This region of enhanced mesh res-
olution then spreads along the �ow direction as the surface waves propagate. Figure 3 shows
a plot of both the exact free surface height and the optimized inlet boundary condition �b in
the case of adapting forward and adjoint meshes, as well as �xed uniform meshes (comprising
300 cells in the horizontal and 5 levels in the vertical) for comparison purposes. Note that
the �xed mesh has 1806 nodes, whereas the adaptive simulation has 225 and 435 nodes for
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Figure 3. Boundary condition at the inlet x=0 for the exact forward run, and inverted results for both
�xed and adapting meshes for the forward and adjoint problems.

the forward and adjoint meshes shown in Figures 1 and 2, respectively, and takes less than
half the computational time. The sinusoidal nature, amplitude and period of the free surface
�eld are well captured during the �rst half period. However, the inlet boundary condition
cannot be optimized during the second half period. The reason for this is that there is no
sensitivity information during the second half of the simulation period (22.5–45 s). It takes
approximately 22:5s for the information to propagate from the detector (x=50m) to the inlet
(in this test case, the phase celerity is c=

√
gH =2:2ms−1 for shallow water as here gravity

is g=1:0ms−2).

5. CONCLUDING REMARKS

In this paper we have reported a �rst attempt at the application of mesh adaptivity to an adjoint
model for data assimilation with a free surface. The inclusion of 3D �ow dynamics with mesh
adaptivity and a free surface (moving domain) poses new challenges to the implementation
of adjoint models. Future work will bene�t from this novel contribution, e.g. the use of a
hierarchy of �ner meshes, naturally available via the adaptivity approach, to accelerate the
inversion procedure. The adjoint and forward models can have their own �exible computation
meshes, which allows the adapted meshes to conform to the forward and adjoint solution
features independently. A simple example of the application of this adjoint model has been
given as a means to demonstrate the feasibility of performing data assimilation with mesh
adaptivity and numerical techniques for free surface movement. Preliminary results have been
presented which demonstrate the ability to invert for free surface elevation at an open boundary
by assimilating observations. Further developments, for example to the case of non-constant
density strati�cation, are ongoing, as are applications to di�erent oceanic cases.
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